数字孪生技术的应用及技术构架发表时间:2023-07-03 10:09 一、什么是数字孪生 数字孪生,是综合运用感知、计算、建模等信息技术,通过软件定义,对物理空间进行描述、诊断、预测、决策,进而实现物理空间与数字虚拟空间的交互映射。 数字孪生和“数字建模”是有很大区别。数字孪生的特性,概括起来就是4个词——“动态”、“全生命周期”、“实时/准实时”、“双向”。 所谓“动态”,是指本体的实时状态、还有外界环境状态,会通过传感器等手段,复现到数字孪生体上。也就是说,孪生体不是静止的,而是变化的。 “全生命周期”,则是指数字孪生贯穿于产品的整个生命周期,包括设计、开发、制造、服务、维护乃至报废回收等。它并不仅限于帮助企业把产品本体造出来,还在于帮助企业使用和维护本体。 “实时/准实时”,很好理解,就是前面所说的“动态”数字反应,是实时/准实时实现的,没有大的时延,没有明显滞后性。 “双向”这个特性非常关键。传统建模往往是单向的——建立模型,然后依据模型制造本体。数字孪生完全不同,孪生体除了接收本体数据之外,还可以反向给本体输送数据。企业可以根据孪生体反馈的信息,对本体采取进一步的行动和干预。 站在技术的角度来看,数字孪生的技术体系是非常庞大的。它的感知、计算和建模过程,涵盖了感知控制、数据集成、模型构建、模型互操作、业务集成、人机交互等诸多技术领域,门槛很高。 以云计算、大数据、人工智能为代表的算力技术演进,以及以全光网络、4G/5G、Wi-Fi 6为代表的联接力技术飞跃,使得人们对数字技术提出了更高的期望。人们希望在信息化的基础上,进一步实现数字化、网络化、智能化,将澎湃的数字动能从个人消费领域转向包括工业制造、交通物流、教育医疗等在内的各个垂直行业,实现全行业及整个社会的数字化转型。
二、数字孪生技术架构概述 数据孪生以数字化方式拷贝一个物理对象,模拟对象在现实环境中的行为,对产品、制造过程乃至整个工厂进行虚拟仿真,目的是了解资产的状态、响应变化、改善业务运营和增加价值。 1.首先,我们需要构建物理实体在数字世界中对应的实体模型,就需要利用知识机理、数字化等技术构建一个数字模型; 2.我们对构建的数字模型需要结合行业特性做出评分,是否可以在商业中投入使用; 3.有了模型还需要利用物联网技术将真实世界中的物理实体元信息,进行采集、传输、同步、增强之后得到我们业务中可以使用的通用数据; 4.通过这些数据可以仿真分析得到数字世界中的虚拟模型,在此基础之上我们可以利用 AR/VR/MR/GIS 等技术在数字世界完整复现出来,人们才能更友好的与物理实体交互; 5.在这个基础之上我们可以结合人工智能、大数据、云计算等技术做数字孪生体的描述、诊断、预警]预测及智能决策等共性应用赋能给名垂直行业。 三、数字孪生关键技术及成熟度 1.模型构建层 建模数字化”是对物理世界数字化的过程。这个过程需要将物理对象表达为计算机和网络所能识别的数字模型。建模的目的是将我们对物理世界或问题的理解进行简化和模型化。 数字孪生的目的或本质是通过数字化和模型化,用信息换能量,以更少的能量消除各种物理实体、特别是复杂系统的不确定性。因此,建立物理实体的数字化模型或信息建模技术是创建数字孪生、实现数字孪生的源头和核心技术,也是"数字化”阶段的核心。 2.数据互动层 物联网"数字化”中的另一层意思是物理世界本身的状态变为可以被计算机和网络所能感知、识别和分析,这些状态包括位置、属性、性能、健康状态等,物联网技术为原子化向比特化转变提供了完整的解决方案,同时,物联网为物理对象和数字对象之间的"互动"提供了通道。 “互动”是数字孪生的一个重要特征,主要是指物理对象和数字对象之间的动态互动,当然也隐含了物理对象之间的互动以及数字对象之自的互动。前两者通过物联网实现,而后者则是通过数字线程实现。能够实现多视图模型 数据融合的机制或引警是数字线程技术的核心。 3.仿真分析层 仿真预测是指对物理世界的动态预测。这需要数字对象不仅表达物理世界的几何形状,更需要数字模型中融入物理规律和机理,这是仿真世界的特长。仿真技术不仅建立物理对象的数字化模型,还要根据当前状态,通过物理学规律和机理来计算、分析和预测物理对象的未来状态。 如何在大体量的数据中,通过高效的挖掘方法实现价值提炼,是数字孪生重点解决问题之一。数字孪生信息分析技术,通过A智能计算模型、算法,结合先进的可视化技术,实现智能化的信息分析和辅助决策,实现对物理实体运行指标的监测与可视化,对模型算法的自动化运行,以及对物理实体未来发展的在线预演,从而优化物理实体运行。 4.共性应用层 数字孪生的映射关系是双向的,一方面,基于丰富的历史和实时数据和先进的算法模型,可以高效地在数字世界对物理对象的状态和行为进行反映:另一万面,通讨在数字世界中的模拟过验和分析预测,可为实体对象的指令下达,流程体系的进一步优化提供决策依据,大幅提升分析决策效率。 数字孪生可以为实际业务决策提供依据,可视化决策系统最具有实际应用意义的,是可以帮助用户建立现实世界的数字孪生。基于既有海量数据信息,通过数据可视化建立一系列业务决策模型,能够实现对当前状态的评估、对过去发生问题的诊断,以及对未来趋势的预测,为业务决策提供全面、精准的决策依据。从而形成“感知一预测一行动”的智能决策支持系统。 数字孪生技术真正改变了智能决策支持系统的部署方式。数字孪生是对基础设施的数字化表示,借此了解基础设施如何工作。当我们将决策支持系统与数字孪生相结合时,产出的是独特的、一个能够不断学习和不断适应的决策支持系统。我们将这种新的模式转变称为“智能决策”。
来源:互联网 |